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ABSTRACT 

Localized wall thinning due to corrosion in utility boiler water-wall tubing is a significant inspection 
concern for boiler operators. Historically, conventional ultrasonics has been used for inspection of these 
tubes. This technique has proven to be very manpower and time intensive. This has resulted in a “spot 
check” approach to inspections, documenting thickness measurements over a relatively small percentage of 
the total boiler wall area. 

NASA Langley Research Center has developed a thermal NDE technique designed to image and 
quantitatively characterize the amount of material thinning present in steel tubing. The technique involves 
the movement of a thermal line source across the outer surface of the tubing followed by an infrared imager 
at a fixed distance behind the line source. Quantitative images of the material loss due to corrosion are 
reconstructed from measurements of the induced surface temperature variations. This paper will present a 
discussion of the development of the thermal imaging system as well as the techniques used to reconstruct 
images of flaws. The application of the thermal line source coupled with the analysis technique represents a 
significant improvement in the inspection speed for large structures such as boiler water-walls. 

A theoretical basis for the technique will be presented which explains the quantitative nature of the 
technique. Further, a dynamic calibration system will be presented for the technique that allows the 
extraction of thickness information from the temperature data. Additionally, the results of applying this 
technology to actual water-wall tubing samples and in situ inspections will be presented. 
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1. INTRODUCTION 
The inspection of large civil structures, such as utility water-wall tubing in boilers is a major challenge for 
power plant operators. Because of the size of these structures (typically 9,000 m2 interior surface area) 
conventional NDE techniques such as ultrasonics, eddy currents and even conventional thermography, are 
limited in their usefulness. Ultrasonic and eddy current techniques typically use small area probes 
(approximately 6 cm2 inspection area) which limit the total practical inspection area to only a small 
percentage of the boiler water-wall. Additionally, the use of these techniques is very manpower intensive, 
imposing a practical limit on the total inspection area. 

Recent developments have shown the advantages of infrared (IR) thermography for the detection of 
corrosion and disbonds in aircraft  structure^.'.^.^ These techniques have typically involved heating with an 
IR source and the concurrent imaging of the induced temperature change with an IR camera. This offers a 
rapid method for detecting corrosion and quantifying its extent in single layer structures. In this 
application, the heating and imaging components of the system remain stationary durin the measurement 

this technique include the expense of the infrared camera and the large power requirement for the infrared 
cycle. While conventional thermography can inspect larger areas at a time (normally 1 m L ) disadvantages of 



heater. This latter disadvantage becomes especially significant when inspecting large, thick structures 
which are poor thermal conductors, such as water-wall tubing. 

This paper examines an alternate method for thermographically obtaining the thickness of the structure. It 
is patterned after a technique described by Maldague4 where a sample moves at a constant velocity past a 
fixed linear heat source and is observed by an IR imager. Maldague demonstrates that the method is 
effective for the detection of disbonding in laminated samples. 

Included are results from an alternate implementation of this system where the specimen is stationary and 
the line heat source and IR camera are translated together at a constant velocity. This implementation 
allows the rapid inspection of large structures such as power plant boilers. From the output of the IR 
camera, an image is reconstructed which yields the induced temperature changes at a fixed distance behind 
the line heat source. 

This method has several distinct advantages over conventional NDE techniques. First, since the IR heater is 
held close to the object of interest, enabling a more efficient coupling of the energy into the specimen, the 
power requirements are reduced while not impacting sensitivity. This method also enables very high 
inspection rates (in steel, speeds of 5 c d s  can be achieved). An additional advantage is that a linear m a y  
of detectors can replace the IR camera, significantly reducing the cost of the system. 

Data will be presented from laboratory measurements on specimens with fabricated thinning to simulate 
material loss due to corrosion. A theoretical basis for relating the amount of thinning to the induced 
temperature change has been developed. The results of applying this technology to actual water-wall 
tubing samples and in siru boiler inspections will be shown. 

2. EXPERIMENTAL TECHNIQUE 
The current implementation of the scanned line source and imager is shown in Figure 1. The IR imager is a 
commercial radiometer with a cooled 256x256-element InSb (Indium - Antimonide) focal plane m a y  
detector. The radiometer's noise equivalent temperature difference (NEAT), cited by the manufacturer, is 
0.025"C when operating the detector in the 3 to 5 micrometer wavelength range. The radiometer produces 
images at both 30 frames per second output (video frame rate, in an RS170, format compatible with 
standard video equipment) and 60 frames per second output in a 12-bit, RS422 digital format. External 
optics, consisting of a wide-angle lens, using germanium optical elements, were used to increase the system 
field-of-view by a factor of approximately two. The expanded field-of-view of this lens is 22" in both the 
horizontal and vertical directions. 

Focusing a commercially available 3000-watt quartz lamp, with an elliptical reflector behind the quartz 
tube, approximates a line of heat. The heat source and the IR imager are attached to a commercial linear 
scanning bridge. Quantitative time based analysis requires synchronization between the IR imager, the heat 
source and the scanning table. This synchronization is achieved by computer control of the application of 
heat, motion of the scanning table and data acquisition. The computer can provide any scanning speed up 
to 30.5 cdsec.  For all cases presented in this paper, the maximum surface temperature change of the 
specimen above ambient was less than 10°C. 

For low emissivity surfaces, it is necessary to enhance the emissivity by coating the surface. Paint is 
typically a good emissivity coating. If the specimen is painted, regardless of color, no additional surface 
coating is necessary. Unpainted metallic samples require the addition of an emissivity enhancing coating. 
For the results presented here, the metallic samples were treated with either a water washable, nontoxic 
paint or a flat black aerosol lacquer to increase the emissivity. 
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Figure I - Schematic and photograph of experimental setup used to implement moving line source 
technique. 

The digital data from the radiometer were acquired and stored at rates up to 60 frames-per-second using a 
real-time image processor board in the control computer. The image processor board has 256 megabytes of 
image memory available for storage and is capable of real-time floating point processing of the incoming 
data. The imaging camera moved with the heat source, enabling data acquisition at a fixed distance from 
the source. From a set of acquired images, a single image was then reconstructed that represents the 
induced temperature change at a fixed distance from the heat source. The reconstructed image is typically 
256 pixels high and up to 1200 pixels wide (depending on the physical length of the sample, the speed of 
the scanner and the image acquisition rate). This reconstruction is currently done either in real-time by the 
image processor, or as post-processing analysis of the data. All of the data presented in the remainder of 
the paper (unless otherwise noted) were reconstructed in this manner. 

3. STEADY STATE ANALYTICAL SOLUTION FOR MOVING LINEAR HEAT 
SOURCE 

Assuming a medium of thickness L, with an infinitely long line source moving along the surface, and from 
a frame of reference moving with and centered on the heat source, it has been shown that the far field 
temperature distribution can be given by’: 
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where q is the input heat flux, p is the density, c the specific heat and IC the thermal diffusivity of the 
material. 

T' 

Examination of Equation 1 indicates that when the summation is approximately equal to zero, the 
temperature becomes a constant, q/(Lvpc), if x is negative. For lower velocities (v < ~K/L),  the condition 
necessary for the summation to be approximately zero is 
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At higher velocities (v > 2Kn), the condition where the summation is zero is approximated when the 
distance behind the line source is equal to the thickness of the plate. When this occurs, the temperature in 
the far field behind the source is given by 

It can be seen from Equation 3 that the observed temperature of the surface is inversely proportional to the 
thickness of the material and can thus be used directly to measure the changes in thickness as long as the 
above condition is satisfied. 

4. EXPERIMENTAL MEASUREMENTS OF SPATIAL RESOLUTION SPECIMENS 
Figure 2 shows a diagram of a steel specimen fabricated to assess the validity of the relationship expressed 
in Equation 3. The specimen was 121.9 cm in length, 45.7 cm in width with a nominal thickness of 0.635 
cm. A 10.2 cm wide region spanning the length of the specimen was reduced in thickness to 0.318 cm and 
three regions (25.4 cm in length and 5.1 cm in width separated by 12.7 cm) centered on the panel were 
reduced in thickness to 0.508 cm, 0.445 cm and 0.381 cm respectively. 
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Figure 2 - Steel specimen, 0.635 cm thick, with three sets of material loss regions, 0.508 cm, 0.455 cm and 
0.381 cm deep respectively, centered on the panel and separated by 12.7 cm. Each region is 5.1 cm wide 
and 25.4 cm long. A region 10.2 cm wide and spanning the length of the specimen was reduced in 
thickness to 0.3 18 cm. 
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Figure 3 - Thermal line scanner image and surface temperature profile for steel thickness specimen. A 
reflective tape reference mark was placed on the surface of the specimen before imaging. 

Data were acquired on the specimen while moving the heat source and imager across the surface at a 
velocity of 3.81cmls (2Kn in this case is approximately 1 cds ) .  An image acquisition rate of 30 frames 
per second was used. Figure 3 shows an image and surface temperature profile obtained for a line of 
detectors 3.5 cm behind the line of heat. The relationship between the scanning speed and the separation 
distance between the line of heat and the detectors has been addressed in previous work5. It is difficult to 
perform an exact reduction of thermal data to thickness using Equation 3 since in practice q is unknown 
and p and c are only approximately characterized. Therefore a 0.635 cm thick region across the top of the 
specimen and a 0.3 18 cm thick region at the bottom were used to perform a linear regression on the data in 
the center of the panel to estimate specimen thickness. The results of this data reduction, averaged over the 
area of the three interior material loss regions, and compared to the actual panel thickness are shown in 
Figure 4. It can be seen that while there is good agreement in some areas, in other areas the calculated 
thickness deviates from the actual by as much as 4.8%. This variation may be due to warping of the 
specimen that occurred during fabrication. This warping made it difficult to keep the line heat source 
parallel to the specimen during the entire length of the data collection scan. 

5. BOILER WATER-WALL TUBE DATA 
To investigate the application of this technique to actual water-wall tubing a large specimen was removed 
from a commercial power plant and sectioned into manageable sized sub-sections. The specimen inspected 
was 116.8cm in length and 26.7cm in width with tubes of outside diameter 3.2 cm and a nominal wall 
thickness of 0.7cm. A series of defects was artificially introduced into the sample by removing the entire 
wall thickness on one side of the sample to provide access ports for machining. Next, material loss regions 
were machined into the exposed inside walls of the tubing. Different sizes and depths of defects were 
introduced into the sample to provide a representative selection of the material losses that may be found in 
operational boilers. Figure 5 provides a schematic of this laboratory sample showing the pattern of defects 
introduced. The defects were produced in the crown region of the tubes (+ 20" of top-dead-center) only. 
Since the majority of the material loss in water-wall tubing occurs near the crown, this is a good 
approximation of the type of defects found on in-service boilers6. The surface of this specimen was sand 
blasted to remove any slag, and then was painted black using flat black aerosol lacquer to enhance the 
emissivity. 
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Figure 4 - Comparison of the actual thickness of the steel specimen with the thickness calculated from the 
thermal line scanner temperature data. 
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Figure 5 - Boiler Water-wall tube sample with machined defect pattern. 

The results of scanning the water-wall tube sample are shown in the image in Figure 6 .  The sample was 
scanned at a speed of 6.3 c d s  and the separation distance (between line of heat and image reconstruction 
point) was 3.5 cm. All the machined defects can be detected in the resulting image. Since material loss 
does not typically occur in the webbing between the tubes (dark bands in Figure 6) these regions are 
ignored. Further it is possible to calibrate the results of the thermal imaging to measure tube thickness at 
points along the crown of the tube. Mechanical thickness measurements were made at various locations 
along tube number one (see Figure 5) .  These measurements were used to calculate a calibration constant 
(vpc/q) for Equation 3 .  A linear regression of the data was performed using the constant calculated from 
tube 1 to obtain thickness maps of the other three tubes. Figure 7 shows a plot of the thickness of two of the 
tubes (both thermal measurements and mechanical measurements) versus position measured from the left 
side of the sample as imaged. A region of the thermal image equal to +20 degrees of the tube crown was 
averaged to produce the thickness plots. 



Figure 6 - Reconstructed thermal line scanner image showing machined defects in boiler water-wall tubing 
sample. 

To more closely simulate the conditions in an operational power plant, a second specimen of the same size 
was also machined with a different series of material loss regions. The surface of this specimen was not 
sand blasted, but was subjected only to a high-pressure water wash. Then, water soluble black paint was 
applied. Two calibration standards of different thicknesses (0.38 cm and 0.63 cm respectively) were placed 
in the webbing region of the sample during inspection. 
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Figure 7 - Comparison of thickness measurements made both thermally and mechanically on boiler water- 
wall tubing sample. 
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Figure 8 -- Reconstructed line scanner image showing machined defects in boiler water-wall tubing sample 
with minimal surface preparation to simulate actual boiler conditions. Three calibration standards can be 
seen in the image, only the outermost two were used for image calibration. 

The results of scanning this sample are shown in Figure 8. The sample was scanned at a speed of 2.54 cm/s 
with a separation distance of 3.5cm behind the line of heat. While the defects are still clearly visible, the 
reduced surface preparation produces noisier data. Since most of the additional noise occurs in the web 
region it can be ignored. The standards were then used to calculate the calibration constant for Equation 3 
and a linear regression was performed to calculate the specimen thickness. Thickness measurements (both 
calculated and from mechanical measurements) versus position are shown in Figure 9. 

Finally, this technique was applied in situ to a power plant boiler. A carriage was constructed which would 
translate the infrared camera and line heater vertically over the surface of the boiler water-wall tubing at a 
rate of 2.54 c d s .  The water-wall tubing was prepared by using high-pressure water to remove any loose 
material and then a light coat of water soluble black paint was applied. Figure 10 shows the results of 
comparing thickness measurements made using this technique with conventional ultrasonic measurements 
for three of the tubes inspected. Calibration of the thermal data was performed in the same manner as 
described above, using two calibration standards with known thicknesses. Time constraints limited boiler 
access thus restricting the inspection area to a region of approximately 6 m2 near the bottom of the boiler. 
The water-wall tubes in the boiler were 7.62 cm in diameter and were free standing (no webbing 
connecting one tube to the next). Limited ultrasonic thickness measurements were subsequently made in 
the same inspection area. While not exact, the agreement between the two measurement methods provides 
promising results. This has led to pursuing the thermal technique for large-scale application in boilers. 

One reason for the disparity between the ultrasonic and thermal measurements could be the large number of 
“sprung tubes” in the inspection area. “Sprung tubes” occur in nonwebbed boilers due to the thermal 
expansion of the tubes during boiler operation. “Sprung tubes” are tubes that are no longer parallel to their 
next neighbor and can bend as much as 5 cm relative to the normal plane of the boiler wall. When the 
inspection apparatus moves over these “sprung tubes” the heat source to inspection surface distance 
changes, which can affect the accuracy of the thickness measurement made. To apply this technique as a 
regular inspection method in operational boilers, compensation for “sprung tubes” is a must. Further 
research will address this problem both with the mechanical scanning mechanism and in the data analysis, 
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Figure 9 -- Comparison of thickness measurements made both thermally and mechanically on boiler water- 
wall tubing sample for tube numbers 1 and 3 respectively. 

6. CONCLUSIONS 
A noncontacting thermal "DE technique has been developed which employs a moving line heat source and 
is capable of imaging defects in boiler water-wall tubing. This technique has been shown to effectively 
detect thinning in steel laboratory samples designed to determine the resolution of the system. A steady 
state solution for the induced thermal change in a plate has been developed. When the steady state 
condition is achieved, the induced temperature change is inversely proportional to the thickness of the 
material at an observation point more than one thickness of the plate behind the line heat source. The 
experimental results are in good agreement with theoretical results. 
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Figure 10 - Comparison of thermal and ultrasonic thickness measurements during in situ boiler inspection. 

Application of the technique to laboratory samples of water-wall tubing showed good agreement with both 
conventional ultrasonic thickness measurements and with mechanical measurements. Tests have shown 
that while sand blasting the surface of the tubing provides the optimal results, acceptable results can still be 
obtained with high-pressure water washing. An initial test of this technique in an actual boiler has yielded 
promising results and has prompted the development of a field-ready boiler inspection apparatus based on 
this technique. This apparatus will allow compensation for “sprung tubes” and should therefore increase 
the accuracy of the thickness measurements. 
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